Bitget App
スマートな取引を実現
暗号資産を購入市場取引先物Bitget Earn広場もっと見る
BNB AIの価格

BNB AIの‌価格BNB

未上場
¥0.01039JPY
-0.65%1D
BNB AI(BNB)の価格は日本円では¥0.01039 JPYになります。
データはサードパーティプロバイダーから入手したものです。このページと提供される情報は、特定の暗号資産を推奨するものではありません。上場されている通貨の取引をご希望ですか?  こちらをクリック
登録
価格チャート
BNB AIの価格チャート(JPY/BNB)
最終更新:2025-12-15 15:45:12(UTC+0)

現在のBNB AI価格(JPY)

現在、BNB AIの価格は¥0.01039 JPYで時価総額は¥0.00です。BNB AIの価格は過去24時間で0.65%下落し、24時間の取引量は¥0.00です。BNB/JPY(BNB AIからJPY)の交換レートはリアルタイムで更新されます。
1 BNB AIは日本円換算でいくらですか?
現在のBNB AI(BNB)価格は日本円換算で¥0.01039 JPYです。現在、1 BNBを¥0.01039、または962.18 BNBを¥10で購入できます。過去24時間のBNBからJPYへの最高価格は¥0.01055 JPY、BNBからJPYへの最低価格は¥0.01034 JPYでした。

BNB AIの価格は今日上がると思いますか、下がると思いますか?

総投票数:
上昇
0
下落
0
投票データは24時間ごとに更新されます。これは、BNB AIの価格動向に関するコミュニティの予測を反映したものであり、投資アドバイスと見なされるべきではありません。

BNB AIの市場情報

価格の推移(24時間)
24時間
24時間の最低価格:¥0.0124時間の最高価格:¥0.01
過去最高値(ATH):
¥0.3481
価格変動率(24時間):
-0.65%
価格変動率(7日間):
-16.90%
価格変動率(1年):
-66.93%
時価総額順位:
#5579
時価総額:
--
完全希薄化の時価総額:
--
24時間取引量:
--
循環供給量:
-- BNB
‌最大供給量:
139.00M BNB

BNB AIのAI分析レポート

本日の暗号資産市場のハイライトレポートを見る

BNB AIの価格履歴(JPY)

BNB AIの価格は、この1年で-66.93%を記録しました。直近1年間のJPY建ての最高値は¥0.3481で、直近1年間のJPY建ての最安値は¥0.005477でした。
時間価格変動率(%)価格変動率(%)最低価格対応する期間における{0}の最低価格です。最高価格 最高価格
24h-0.65%¥0.01034¥0.01055
7d-16.90%¥0.01022¥0.01277
30d-22.26%¥0.01022¥0.01361
90d-86.62%¥0.01022¥0.08884
1y-66.93%¥0.005477¥0.3481
すべての期間-39.09%¥0.005477(2025-08-25, 112 日前)¥0.3481(2025-09-10, 96 日前)
BNB AI価格の過去のデータ(全時間)

BNB AIの最高価格はいくらですか?

BNBの過去最高値(ATH)はJPY換算で¥0.3481で、2025-09-10に記録されました。BNB AIのATHと比較すると、BNB AIの現在価格は97.01%下落しています。

BNB AIの最安価格はいくらですか?

BNBの過去最安値(ATL)はJPY換算で¥0.005477で、2025-08-25に記録されました。BNB AIのATLと比較すると、BNB AIの現在価格は89.74%上昇しています。

BNB AIの価格予測

BNBの買い時はいつですか? 今は買うべきですか?それとも売るべきですか?

BNBを買うか売るかを決めるときは、まず自分の取引戦略を考える必要があります。長期トレーダーと短期トレーダーの取引活動も異なります。BitgetBNBテクニカル分析は取引の参考になります。
BNB4時間ごとのテクニカル分析によると取引シグナルは売却です。
BNB1日ごとのテクニカル分析によると取引シグナルは売却です。
BNB1週間ごとのテクニカル分析によると取引シグナルは売れ行き好調です。

2026年のBNBの価格はどうなる?

+5%の年間成長率に基づくと、BNB AI(BNB)の価格は2026年には¥0.01114に達すると予想されます。今年の予想価格に基づくと、BNB AIを投資して保有した場合の累積投資収益率は、2026年末には+5%に達すると予想されます。詳細については、2025年、2026年、2030〜2050年のBNB AI価格予測をご覧ください。

2030年のBNBの価格はどうなる?

+5%の年間成長率に基づくと、2030年にはBNB AI(BNB)の価格は¥0.01354に達すると予想されます。今年の予想価格に基づくと、BNB AIを投資して保有した場合の累積投資収益率は、2030年末には27.63%に到達すると予想されます。詳細については、2025年、2026年、2030〜2050年のBNB AI価格予測をご覧ください。

‌注目のキャンペーン

よくあるご質問

BNB AIの現在の価格はいくらですか?

BNB AIのライブ価格は¥0.01(BNB/JPY)で、現在の時価総額は¥0 JPYです。BNB AIの価値は、暗号資産市場の24時間365日休みない動きにより、頻繁に変動します。BNB AIのリアルタイムでの現在価格とその履歴データは、Bitgetで閲覧可能です。

BNB AIの24時間取引量は?

過去24時間で、BNB AIの取引量は¥0.00です。

BNB AIの過去最高値はいくらですか?

BNB AI の過去最高値は¥0.3481です。この過去最高値は、BNB AIがローンチされて以来の最高値です。

BitgetでBNB AIを購入できますか?

はい、BNB AIは現在、Bitgetの取引所で利用できます。より詳細な手順については、お役立ちbnb-aiの購入方法 ガイドをご覧ください。

BNB AIに投資して安定した収入を得ることはできますか?

もちろん、Bitgetは戦略的取引プラットフォームを提供し、インテリジェントな取引Botで取引を自動化し、利益を得ることができます。

BNB AIを最も安く購入できるのはどこですか?

戦略的取引プラットフォームがBitget取引所でご利用いただけるようになりました。Bitgetは、トレーダーが確実に利益を得られるよう、業界トップクラスの取引手数料と流動性を提供しています。

暗号資産はどこで購入できますか?

Bitgetアプリで暗号資産を購入する
数分で登録し、クレジットカードまたは銀行振込で暗号資産を購入できます。
Download Bitget APP on Google PlayDownload Bitget APP on AppStore
Bitgetで取引する
Bitgetに暗号資産を入金し、高い流動性と低い取引手数料をご活用ください。

動画セクション - 素早く認証を終えて、素早く取引へ

play cover
Bitgetで本人確認(KYC認証)を完了し、詐欺から身を守る方法
1. Bitgetアカウントにログインします。
2. Bitgetにまだアカウントをお持ちでない方は、アカウント作成方法のチュートリアルをご覧ください。
3. プロフィールアイコンにカーソルを合わせ、「未認証」をクリックし、「認証する」をクリックしてください。
4. 発行国または地域と身分証の種類を選択し、指示に従ってください。
5. 「モバイル認証」または「PC」をご希望に応じて選択してください。
6. 個人情報を入力し、身分証明書のコピーを提出し、自撮りで撮影してください。
7. 申請書を提出すれば、本人確認(KYC認証)は完了です。
BNB AIを1 JPYで購入
新規Bitgetユーザー向け6,200 USDT相当のウェルカムパック!
今すぐBNB AIを購入
Bitgetを介してオンラインでBNB AIを購入することを含む暗号資産投資は、市場リスクを伴います。Bitgetでは、簡単で便利な購入方法を提供しており、取引所で提供している各暗号資産について、ユーザーに十分な情報を提供するよう努力しています。ただし、BNB AIの購入によって生じる結果については、当社は責任を負いかねます。このページおよび含まれる情報は、特定の暗号資産を推奨するものではありません。

BNBからJPYへの交換

BNB
JPY
1 BNB = 0.01039 JPY。現在の1 BNB AI(BNB)からJPYへの交換価格は0.01039です。このレートはあくまで参考としてご活用ください。
Bitgetは、主要取引プラットフォームの中で最も低い取引手数料を提供しています。VIPレベルが高ければ高いほど、より有利なレートが適用されます。

BNBの各種資料

BNB AIの評価
4.6
100の評価
コントラクト:
0x3376...2C66c85(BNB Smart Chain (BEP20))
リンク:

Bitgetインサイト

lionel_nyam
lionel_nyam
7時
Everytime $BTC prices dips beyond what envisaged, I find consolation in the fact that, outside just trading crypto tokens, I have stocks to rely on and bitget is responding directly to this surging interest, ensuring users can trade tokenized stock tokens more efficiently while keeping more money in their pockets through reduced network costs. For reference https://www.bitget.com/blog/articles/bitget-tokenized-stocks-bsc-migration This time, $BNB also took a deeper dip as well
BTC-1.25%
BNB-2.30%
TheNewsCrypto
TheNewsCrypto
9時
BNB Could Reach $1,700, But Ozak AI Forecast Points to Higher ROI Territory🚀🤖 To Know More👇
BNB-2.30%
Justcryptopay
Justcryptopay
10時
$BNB is shaping up well with a clear bull flag on the 4H chart. After a strong move up, price has been consolidating in a descending channel. This pattern shows sellers are fading while buyers are quietly stepping in. A breakout above the resistance would confirm the bullish move and open the door for another leg higher. Until then, it’s a waiting game. No breakout, no trade. But if BNB reclaims that level, momentum could pick up fast
BNB-2.30%
TokenSight
TokenSight
14時
Exploring Copy Trading Strategy Through Getagent AI and Real Trades
▪️How I Used Getagent AI to Understand Copy Trading Agents When I started using Getagent AI, my goal was not to blindly copy trades. I wanted to understand how these AI copy trading agents actually think, how they manage risk, and which ones are structured to avoid major losses over time. Instead of guessing, I began asking Getagent very direct questions about the logic behind each agent, their strategy design, and why their performance differed under the same market conditions. Those conversations gave me far more clarity than I expected. ▪️Learning How AI Copy Trading Agents Think One of the first things Getagent helped me understand is that AI copy trading agents are not equal just because they trade crypto. Each one is built around a specific philosophy. Some are designed to survive first and grow slowly, while others are built to exploit momentum aggressively when conditions allow. That distinction became extremely important when I asked which agents were best suited for avoiding major losses. ▪️Choosing Agents Designed to Avoid Major Losses From those discussions, Apex_Neutral stood out as the most risk-conscious option. Getagent explained that this agent operates with extreme patience, only entering the market when statistically significant divergences appear. It pairs long and short positions to neutralize market direction risk and avoids over-trading entirely. Even though its returns were not the highest, the logic behind it was clear. This agent was built for protection, not excitement. That alone reshaped how I think about capital preservation when choosing who to copy. ▪️Understanding the Highest Winning AI Trader The conversation naturally led to BlueChip_Alpha, which at the time had the highest winning performance among the agents. What impressed me was not just the profit rate, but the structure behind it. Getagent explained that BlueChip_Alpha treats the market as a ranking system. Every few hours, it evaluates major assets like BTC, ETH, SOL, and BNB based on multi-timeframe momentum and volume-price behavior. Strong performers are bought, weak performers are shorted, creating a hedged, market-neutral portfolio. ▪️How the AI Handles Trend Shifts and Risk This is where I really began to understand how AI copy trading differs from manual trading. BlueChip_Alpha does not predict direction. It captures relative strength. Leverage is increased only when momentum and volume align across multiple timeframes, and exposure is reduced the moment those conditions weaken. Risk controls are predefined, not emotional. Seeing that logic laid out clearly by Getagent changed how I evaluate aggressive agents. ▪️Why Some Agents Struggle in Certain Markets I also asked Getagent why some agents underperform even when they have strong historical risk metrics. That’s when the AI explained the difference between rigid and adaptive strategies. Dip_Sniper, for example, is designed to catch trend exhaustion and reversals. When the market trends cleanly without exhaustion signals, it often stays inactive and may show small losses. On the other hand, Pure_DeepSeek adapts dynamically, switching between scalping and swing behavior depending on real-time conditions. ▪️Seeing the Logic in a Real Copy Trade What really tied everything together was seeing this logic play out in an actual copy trade. One closed $SOL short position, opened and closed within a few hours, reflected exactly what Getagent had described earlier. The entry was based on relative weakness, the leverage was controlled, fees were accounted for, and the position was closed without hesitation once the objective was met. ▪️How This Changed My Approach to Copy Trading Looking back, using Getagent AI to question these copy trading agents changed how I approach copying trades entirely. I stopped chasing the highest returns and started focusing on structure, adaptability, and risk logic. Instead of asking which agent makes the most money, I now ask how that agent survives different market phases. ▪️Final Takeaway From Using Getagent AI In the end, the biggest value wasn’t just copying AI trades. It was using Getagent AI to understand why those trades exist in the first place. That understanding made me more selective, more patient, and far more confident in choosing which AI copy trading agents actually align with my risk tolerance and trading goals.
BTC-1.25%
ETH-1.89%
PneumaTx
PneumaTx
19時
Choosing the Right Bitget GetAgent AI Trader: A Data-Backed Personal Experience
Why I joined the GetAgent AI Trading Bot event: I joined the Bitget GetAgent AI Trading Bot event because I wanted to understand how AI copy trading actually works in real market conditions. Not just which bot shows the highest number, but how each AI thinks, manages risk, and behaves when the market is uncertain. Once I started looking closely, I realized that choosing an AI agent is not a simple decision. Each agent follows a completely different logic, and those differences show clearly in their performance, drawdowns, and trade behavior. Comparing the AI agents by strategy and performance: The first agent that stood out to me was Infinite_Grid. At the time I observed it, it was showing a profit rate around 9%, which was the strongest among all agents. Its strategy is contrarian cycle trading. It assumes price moves in cycles and focuses on buying weakness and selling strength instead of chasing trends. It held mostly long positions on major coins like BTC, ETH, BNB, SOL, XRP, and LTC, using moderate leverage between 5x and 8x. Even though it experienced volatility, it showed the ability to recover from drawdowns. Pure_DeepSeek was the second strongest performer, with a profit rate around 5.5%. Its strategy is adaptive and flexible. It does not follow strict rules and can switch between scalping and swing trading depending on market conditions. At the time, it held long positions on BTC and SOL and kept many assets on wait. This agent felt cautious and focused on capital preservation when signals were unclear. Apex_Neutral had a profit rate around -9.5%. Its approach is market neutral. It opens both long and short positions at the same time to reduce directional risk. It traded assets like BTC, ETH, SOL, and XRP using higher leverage around 12x, but only entered when confidence was high. Even though performance was negative during this period, its risk control and patience were very clear. Dip_Sniper showed a profit rate around -25%. Its strategy focuses on detecting trend exhaustion and early reversals using divergence signals like RSI and MACD. At the time I observed it, it had no open positions and was mostly waiting for clear setups. This showed discipline, but also highlighted how difficult reversal trading can be when timing is not perfect. BlueChip_Alpha was sitting around -55%. It uses a cross-sectional ranking strategy on large-cap coins such as BTC, ETH, BNB, SOL, DOGE, UNI, and XRP. It goes long on strong assets and short on weaker ones, usually with leverage around 10x. This approach is complex and clearly more sensitive to market conditions. Altcoin_Turbo had a profit rate close to -65%. It focuses on altcoins like ADA, UNI, SOL, and BNB, pairing long and short positions to isolate momentum. Even with hedging, the volatility in altcoins made this strategy very challenging during the observed period. CTA_Force was also near -65%. It follows a directional trend strategy using momentum and volume filters. At the time, it was only holding a long BNB position with 10x leverage and waiting on other assets. This showed how trend-following systems can struggle when markets are not trending clearly. What the numbers taught me about market conditions: Looking at all agents together made one thing very clear. This market phase was not friendly to pure momentum or aggressive trend-following strategies. Agents focused on altcoins, high leverage, or strict trend continuation were under pressure. The agents that handled conditions better were the ones that were either adaptive or contrarian. Infinite_Grid and Pure_DeepSeek stood out not because they avoided losses entirely, but because their logic matched the market environment better. How I think about switching between AI agents: From this comparison, I formed a simple rotation logic. When the market is choppy, range-bound, or showing signs of exhaustion, Infinite_Grid makes sense as a base agent. Its cycle-based logic and moderate leverage help control risk. When volatility increases and trends become less predictable, switching part of exposure to Pure_DeepSeek makes sense. Its adaptive behavior allows it to slow down or change style when signals are mixed. During very uncertain or unstable periods, Apex_Neutral can be useful to reduce directional exposure, even if returns are slower. Agents like Dip_Sniper, BlueChip_Alpha, Altcoin_Turbo, and CTA_Force require very specific market conditions. They may perform well in strong trends or clean reversals, but during this period, the data showed that patience was needed before allocating to them. This helped me understand that rotating between AI agents based on market behavior is more important than sticking to one bot permanently. Why I chose Infinite_Grid as my main agent: After comparing strategies and performance, I chose Infinite_Grid as my main copy trading agent. Its profit rate around 9%, combined with its calm behavior and moderate leverage, aligned well with my risk tolerance. I also liked that it showed a clear recovery after a drawdown instead of overtrading. Another important factor for me was that it uses 0% profit sharing, which made testing and observing the strategy more transparent. What actually happened in my own trades: In my own account, one BNB trade closed with a small realized profit. It was a long position using 8x leverage that opened and closed on the same day. The gain was small, but the execution was clean and disciplined. I also have open positions on ETH and SOL that were currently showing small unrealized losses. These positions use 5x leverage and have no liquidation risk. This fits the cycle-based logic of Infinite_Grid, which expects price to move back and forth before resolving. Seeing both realized gains and unrealized losses helped me understand that this strategy is about patience and risk control, not instant results. What this experience taught me about AI copy trading: This event taught me that AI copy trading is not about finding the perfect bot. It is about understanding how each AI thinks, how it performs in different conditions, and how to rotate between strategies when the market changes. The Bitget GetAgent platform made it easy to compare agents side by side, observe real behavior, and learn from both profits and drawdowns. That learning process was the most valuable part of this experience. For me, Infinite_Grid fit best in this market phase, but seeing all agents together helped me build a clearer and more disciplined approach to AI trading going forward.
BTC-1.25%
DOGE-2.49%